Kolmogorov Complexity and Instance Complexity of Recursively Enumerable Sets

نویسنده

  • Martin Kummer
چکیده

We study in which way Kolmogorov complexity and instance complexity affect properties of r.e. sets. We show that the well-known 2 log n upper bound on the Kolmogorov complexity of initial segments of r.e. sets is optimal and characterize the T-degrees of r.e. sets which attain this bound. The main part of the paper is concerned with instance complexity of r.e. sets. We construct a nonrecursive r.e. set with instance complexity logarithmic in the Kolmogorov complexity. This refutes a conjecture of Ko, Orponen, Schöning, and Watanabe. In the other extreme, we show that all wtt-complete set and all Q-complete sets have infinitely many hard instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kolmogorov complexity and computably enumerable sets

We study the computably enumerable sets in terms of the: (a) Kolmogorov complexity of their initial segments; (b) Kolmogorov complexity of finite programs when they are used as oracles. We present an extended discussion of the existing research on this topic, along with recent developments and open problems. Besides this survey, our main original result is the following characterization of the ...

متن کامل

Analogues of Chaitin's Omega in the computably enumerable sets

We show that there are computably enumerable (c.e.) sets with maximum initial segment Kolmogorov complexity amongst all c.e. sets (with respect to both the plain and the prefix-free version of Kolmogorov complexity). These c.e. sets belong to the weak truth table degree of the halting problem, but not every weak truth table complete set has maximum initial segment Kolmogorov complexity. Moreove...

متن کامل

Kolmogorov Complexity of Generalized Computably Enumerable Sets

The main purpose of this work is to characterize computably enumerable (c.e.) sets and generalized c.e. sets according to Kolmogorov complexity hierarchy. Given a set A, we consider A m, the initial segment of length m of the characteristic sequence of A. We show that the characteristic sequence of a 2 x-c.e. set can be random in the sense of Martin-LL of. We show that for x n-c.e. sets A, the ...

متن کامل

Kolmogorov complexity in perspective

We survey the diverse approaches to the notion of information content: from Shannon entropy to Kolmogorov complexity. The main applications of Kolmogorov complexity are presented: namely, the mathematical notion of randomness (which goes back to the 60’s with the work of MartinLöf, Schnorr, Chaitin, Levin), and classification, which is a recent idea with provocative implementation by Vitanyi an...

متن کامل

Kolmogorov Complexity and the Recursion Theorem

We introduce the concepts of complex and autocomplex sets, where a set A is complex if there is a recursive, nondecreasing and unbounded lower bound on the Kolmogorov complexity of the prefixes (of the characteristic sequence) of A, and autocomplex is defined likewise with recursive replaced by A-recursive. We observe that exactly the autocomplex sets allow to compute words of given Kolmogorov ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 1996